DETERMINACIÓN DE LAS IMPUREZAS ISO-NTN Y UN COMPUESTO BIS-ALQUÍLICO EN FORMULADOS DE IMIDACLOPRID

Rafaela Batista
Instituto de Investigaciones de Sanidad Vegetal. Calle 110 no. 514 e/ 5a. B y 5a. F., Playa, Ciudad de La Habana, CP 11600

RESUMEN

Se desarrolló un método para la determinación de impurezas en formulados de imidacloprid empleando la cromatografía líquida de alta resolución (HPLC). El método consistió en un análisis isocrótic de Iso-NTN y un compuesto bis-alquílico por HPLC con una columna RP-8 y un detector UV a 288 nm. El método que se recomienda para la fabricación para analizar dichas impurezas utiliza el gradiente de fase móvil, por lo que con el desarrollo de este nuevo método se pudieron obtener buenas resultados con un límite de detección de 0.01%, dos veces inferior al límite permitido de la FAO (0.1%), además del análisis de solvents. Este nuevo método permite la evaluación de estas impurezas en los formulados de imidacloprid como que se comercializan en nuestro país, y evitar así daños toxicológicos tanto a la naturaleza como al hombre, y dilucida la calidad del formulado, que a su vez permite la selección del mejor proveedor.

Palabras claves: HPLC, imidacloprid, Iso-NTN, compuesto bis-alquílico

ABSTRACT

A method was developed for the determination of impurities in formulations of imidacloprid, using the High Performance Liquid Chromatography (HPLC). The method is based on the isocratic analysis of Iso-NTN and bisalkylsubstances for HPLC using a RP-8 column and UV detection at 288 nm. The method recommended for manufacture to analyze these impurities uses the gradient of mobile phase. For this reason, good results could be obtained by using the proposed method with a detection limit of 0.01%, 10 times below the permissible limit of the FAO (0.1%), besides the saving of solvents. This new method allows the evaluation of these impurities in those formulations of imidacloprid that are marketed in our country avoiding the toxic damages as much to the nature as to the man, as well as to elucidate the quality of the formulation that in turn allows the best supplier's selection.

Key words: HPLC, imidacloprid, Iso-NTN, bisalkylsubstances

INTRODUCCIÓN

El imidacloprid es un insecticida sistémico del ácido cloronicotínico con uso en el suelo, semilla y follaje para el control de insectos chupadores, áfidos, tirips, mosca blanca, termitas, insectos del césped y del suelo y algunos escarabajos [Bayer, 1997]. Este ingrediente activo se utiliza en Cuba en la lucha contra Thrips palmi en diferentes cultivos, tales como papa, frutales y cítricos, así como para el control de otros tipos de plagas en tomate, pimiento y en los cítricos.

El imidacloprid es ligeramente tóxico, clasificado por la EPA como toxicidad II y III, y existen tolerancias de los residuos de este producto y sus metabolitos en alimentos [Pesticide Manual, 1994], [EPA, 1999].

Según las especificaciones de la FAO, el nivel máximo permitido para impurezas de tipo industrial en una formulación debe ser menor de 1.0 g/kg. La contaminación imprevista con otros químicos puede ocurrir durante la síntesis y la preparación de la formulación. Los fabricantes deben garantizar que los riesgos de estas fuentes se minimicen. Tales impurezas son consideradas significativas si los niveles exceden aquellos especificados [FAO, 1999].

También en la producción de ingredientes activos técnicos se pueden producir impurezas perceptibles, como son materiales que se utilizaron en la síntesis, productos de descomposición y los de reacciones colaterales a la síntesis, como los isómeros.

Existen varios metabolitos que se producen por reacciones colaterales en el proceso de síntesis del imidacloprid, siendo de nuestro interés el Iso-NTN (isómero del imidacloprid), y los compuestos bis-alquílico (derivado de 2-cloro-5-metilpiridina) (Fig. 1) [Bayer, 1998].
De dichos compuestos no se tiene conocimiento toxicológico, ni de los efectos que puedan producir al ser humano y al ambiente; no obstante es muy importante conocer las concentraciones en que se encuentran dentro de la formulación. Además, la calidad (debido a las impurezas) de otras opciones u ofertas, limitaban su adquisición a precios muy favorables, y es por eso los dimos a la tarea de desarrollar un método que nos permitiera alcanzar una separación adecuada y un límite de detección acorde con los requisitos de la FAO. Al poder controlar esas impurezas podemos exigirlas en niveles mínimos a nuestros proveedores, lo cual incide en el precio de las ofertas y en la posibilidad de escoger la de menor costo, así como evitar efectos nocivos para la salud humana y el medio ambiente.

MATERIALES Y MÉTODOS

Fundamento del método: Se basa en la determinación isotrópica de Iso-NTN y un compuesto bis-alquilo en formulaciones de imidacloprid por cromatografía líquida de alta resolución (HPLC), usando una columna Lichrospher 100 RP-8 con un detector UV a 268 nm.

Reactivos
- Acetonitrilo HPLC, Lichrosolv MERCK
- Ácido fosfórico PA, MERCK
- Agua bidestilada
- Sal de sodio del ácido hexano sulfónico, RIEDEL DE HAE
- Estándar analítico de Iso-NTN 33893 99,0%
- Estándar analítico de bis-alquil 99,8%

Equipos y cristalería
- Balanza analítica SARTORIUS Modelo BP 210S
- Cromatógrafo líquido de alta resolución con detector UV Spectra Physics 8440, Inyector manual, bomba LKB 2150 HPLC y registrador.
- Frascos volumétricos de 10, 50 y 100 mL
- Pipetas volumétricas de 1 y 5 mL
- Microsiringuilla Hamilton de 20 μL.

Condiciones cromatográficas
- Columna: Lichrospher 100 RP-8 Hichar, 250 x 4 mm, 5 μm
- Fase móvil: A + B (55:45) v/v

Eluentes
- **A:** Agua = 7,5 g de la sal de sodio del ácido hexano sulfónico (ajustada con H₃PO₄ hasta pH = 2,5)
- **B:** Acetonitrilo + agua (1:1) + 7,5 g/L de la sal de sodio del ácido hexano sulfónico (ajustada con H₃PO₄ a pH = 2,5)
- Flujo: 1,5 mL/min
- Longitud de onda: 268 nm
- Volumen de inyección: 20 μL
- Velocidad de la columna: 2 mm/min

Procedimiento:
- **Solución patrón de Iso-NTN**
 Se pesa 10 mg de Iso-NTN en un volumétrico de 100 mL, se disuelve en 5 mL de acetonitrilo y se enrasa con agua/acetónitrilo (1:1). Se toman 5 mL y se llevan a un volumétrico de 50 mL diluyendo con el eluente A. De esta última solución se toman 5,0 mL y se llevan a 20 mL con eluente A.
- **Solución patrón de bis-alquil**
 Se pesa 10 mg de bis-alquil en un volumétrico de 100 mL, se disuelve en 5 mL de acetonitrilo y se enrasa con agua/acetónitrilo (1:1). Se toman 5,0 mL y se llevan a un volumétrico de 50 mL diluyendo con el eluente A. De esta última solución se toman 5,0 mL y se llevan a 20 mL con eluente A.
- **Solución muestra**
 Se pesa 100 mg en un volumétrico de 50 mL, se solubilizan en 5,0 mL de acetonitrilo y se diluyen y se enrasa con el eluente A.

Cálculos

\[
Z = \frac{C_{pi} \times hml}{hpi}
\]

\[
I = \frac{1}{V_d}
\]

\[
% \text{ de impureza} = \frac{Z \times 100}{I}
\]

donde:
- **Z:** Cantidad de impureza en una inyección
- **I:** Cantidad de imidacloprid en una inyección
- **C_{pi}:** Concentración del patrón de la impureza en la inyección (mg/μL)
Determinación de las impurezas Iso-NTN...

\(l_{mi} \): Altura de la impureza en la muestra
\(l_{pi} \): Altura del patrón de impureza
\(V_d \): Volumen de dilución de la muestra (µL)
\(V_i \): Volumen de inyección (µL)
\(P_w \): Peso de muestra (mg)

RESULTADOS Y DISCUSIÓN

El método recomendado por los fabricantes para el análisis de estas impurezas emplea el gradiente de fase móvil, el cual se lleva a cabo con un accesorio que no se dispone en nuestro laboratorio y que es muy costoso [Bayer AG, Analytical Method NTN 33893, 1998]. Nosotros seleccionamos una fase móvil intermedia que permitiera isocrámicamente que ambos compuestos dieran señal sin posibilidad de interferencia y con un límite de detección de 0,01% acorde con lo exigido por las especificaciones de la FAO.

El resultado obtenido de las muestras analizadas se expresa en la Tabla 1.

<table>
<thead>
<tr>
<th>Impurezas</th>
<th>Muestra 1</th>
<th>Muestra 2</th>
<th>Muestra 3</th>
<th>Muestra 4</th>
<th>Muestra 5</th>
<th>Muestra 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iso-NTN</td>
<td>0,03</td>
<td>0,72</td>
<td>2,83</td>
<td>0,039</td>
<td>1,20</td>
<td>17,41</td>
</tr>
<tr>
<td>Compuesto bis-alquilico</td>
<td>0,20</td>
<td>0,025</td>
<td>0,27</td>
<td>0,043</td>
<td>0,10</td>
<td>6,14</td>
</tr>
</tbody>
</table>

Como se puede apreciar, la impureza de Iso-NTN se halla en todas las muestras, en concentraciones en la mayoría de los casos superior al 1%, y por debajo del límite permisible sólo en las muestras 1 y 4, correspondiéndose también con lo reportado por el fabricante de ambas (máximo 0,1%) [Bayer Specification Imidacloprid].

En el caso del compuesto bis-alquilico, aunque aparece en todas las muestras, se presenta en menor concentración que la impureza de Iso-NTN. No obstante, también está por encima del límite permisible en las muestras 1 y 3, aunque el proveedor de la muestra 1 manifiesta un máximo 2,5% para esta impureza en su producto [Bayer, Analytical Note].

CONCLUSIONES

- Se determinó que el compuesto bis-alquilico se encuentra por encima del límite establecido por la FAO en dos muestras.
- Se determinó que en cuatro de las seis muestras analizadas la concentración de Iso-NTN tuvo valores entre 7 y 174 veces superior al límite de la FAO.

REFERENCIAS

Bayer, Analytical Note. Analysis of Imidacloprid. 01.03.99

